A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus.
نویسندگان
چکیده
Neurogenesis occurs in restricted regions in the adult mammalian brain, among which the neurogenesis in the hippocampal dentate gyrus plays the crucial role in learning and memory. To date, little is known about neurogenic cues, which result in the neuronal fate adoption of neural stem cells residing in neurogenic regions, especially neurogenic cues in adult hippocampal neurogenesis. In the present study, we show that hippocampal astrocytes and also dentate granule cells adjacent to neural stem cells secrete a newly cloned novel secretory factor, Neurogenesin-1. This protein contains three cysteine-rich domains and a unique sequence and contributes to neuronal differentiation of neural stem cells in the adult brain by preventing the adoption of a glial fate. Furthermore, the neurogenic activity detected in the hippocampal culture medium was markedly suppressed by the administration of an anti-Neurogenesin-1 antibody. These findings suggest endogenous mechanisms that induce adult hippocampal neurogenesis and propose an innovative treatment for the neurodegenerative diseases that cause loss of hippocampal neurons.
منابع مشابه
P 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کاملAdult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF.
The adult hippocampus hosts a population of neural stem and progenitor cells (NSPCs) that proliferates throughout the mammalian life span. To date, the new neurons derived from NSPCs have been the primary measure of their functional relevance. However, recent studies show that undifferentiated cells may shape their environment through secreted growth factors. Whether endogenous adult NSPCs secr...
متن کاملGeneration of motor neurons from human amygdala-derived neural stem-like cells
Objective(s): Among several cell sources, adult human neural stem/progenitor cells (hNS/PCs) have been considered outstanding cells for performing mechanistic studies in in vitro and in vivo models of neurological disorders as well as for potential utility in cell-based therapeutic approaches. Previous studies addressed the isolation and culture of hNS/PCs from human neocortical and hippocampal...
متن کاملEffect of transplantation of human embryonic stem cell-derived neural progenitor cells on adult neurogenesis in aged hippocampus.
Adult neurogenesis occurs within the special microenvironment in the subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle of the mammalian brain. The special microenvironment is known as neurogenic niches. Multiple cell types, including endothelial cells, astroglia, ependymal cells, immature progeny of neural stem cells, and mature neurons, comprise the neuro...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 37 شماره
صفحات -
تاریخ انتشار 2003